Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemosphere ; 253: 126692, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283427

RESUMO

Zinc (Zn) is a micronutrient, but its excessive concentration can impair plant growth and development. Fertilizers, liming materials, pesticides and fungicides containing Zn have contributed to increase its concentration in agricultural soils. The aim of the present study is to evaluate the effect of Zn excess on the non-enzymatic (anthocyanin and ß-ecdysone) and enzymatic (superoxide dismutase-SOD and guaiacol peroxidase-GPX) antioxidant system of two P. glomerata accessions (JB and GD) grown in hydroponic system and soil, under short- and long-term exposure times. Three Zn levels (2, 100 and 200 µM) and two short-term exposure times (7 and 14 d) were tested in the hydroponic experiment. Three Zn levels (2, 100 and 200 mg kg-1) and two long-term exposure times (34 and 74 d) were tested in the soil experiment. The effects of Zn excess on P. glomerata accessions depended on the growth system and exposure time. Zinc excess in both tested growth systems resulted in significant change in the tissue oxidative process (MDA concentration) in both accessions, as well as broadened the antioxidant system response, which was based on antioxidant enzymes (SOD and GPX) and secondary metabolites (anthocyanins and ß-ecdysone). The highest anthocyanin concentration was observed in accession JB, which was grown in hydroponics, but tissue anthocyanin concentration increased in both accessions, regardless of growth medium and exposure time. The ß-ecdysone concentration in the roots increased in both accessions, but accession GD was more responsive to Zn excess. There was significant physiological variation in P.glomerata accessions in response to Zn excess.


Assuntos
Amaranthaceae/fisiologia , Poluentes do Solo/toxicidade , Zinco/toxicidade , Amaranthaceae/genética , Amaranthaceae/metabolismo , Antocianinas , Antioxidantes/metabolismo , Variação Genética , Hidroponia , Oxirredução , Peroxidase , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/análise , Superóxido Dismutase/metabolismo , Zinco/análise
2.
Environ Sci Pollut Res Int ; 25(19): 18548-18558, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29700750

RESUMO

Cadmium (Cd) is toxic to plants and animals, making it necessary to develop strategies that seek to reduce its introduction into food chains. Thus, the aim of this study was to investigate whether silicon (Si) and selenium (Se) reduce Cd concentrations in Pfaffia glomerata medicinal plant and attenuate the oxidative stress promoted by this metal. These plants were cultivated in hydroponics under the following treatments: control (nutrient solution), 2.5 µM Se, 2.5 mM Si, 50 µM Cd, 50 µM Cd + 2.5 µM Se, 50 µM Cd + 2.5 mM Si. After 14 days of exposure to treatments, leaves and roots were collected for the determination of dry weight of shoot and roots, Cd concentrations, chlorophyll and carotenoids content, and biochemical parameters (lipid peroxidation and guaiacol peroxidase and superoxide dismutase activities). The data were submitted to analysis of variance and means were compared with Scott-Knott test at 5% error probability. Roots of P. glomerata plants showed a significant reduction on dry weight accumulation when exposed to Cd. However, both Se and Si promoted a significant reduction of deleterious effects of Cd. The Cd concentrations in the tissues were reduced in the presence of Se or Si. Plants treated with Cd together with Se or Si presented higher pigment content than those with only Cd, thus showing a reduction in the negative effects caused by this element. In the treatments in which Se and Si were added in the growth medium together with Cd, an activation of superoxide dismutase and guaiacol peroxidase enzymes was observed in the roots and shoot, which may have contributed to lower lipid peroxidation. Thus, Se and Si reduce Cd concentrations and have potential to ameliorate Cd toxicity in P. glomerata plants, which can be used to increase productivity and quality of medicinal plants.


Assuntos
Amaranthaceae , Antioxidantes/metabolismo , Cádmio/toxicidade , Selênio/farmacologia , Silício/farmacologia , Poluentes do Solo/toxicidade , Amaranthaceae/efeitos dos fármacos , Amaranthaceae/enzimologia , Brasil , Cádmio/metabolismo , Clorofila/metabolismo , Ativação Enzimática/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais , Poluentes do Solo/metabolismo
3.
An Acad Bras Cienc ; 89(1): 163-174, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273243

RESUMO

A hydroponic experiment was carried out to investigate the effect of phosphorus (P) nutrition on arsenic (As) uptake and translocation within the seedlings of rice cultivars. The experiment occurred in three stages: I 5 days of acclimatization (nutritive solution); II 10 days under P (0.0 and 0.09 mM) and As (0.0 and 100 mM) treatments; III 5 days under recovery. The As exposure had significant effect reducing dry weights of shoots or roots, resulted in elevated concentrations of As in shoot tissues. BR-IRGA 409 showed the highest susceptibility to As in biomass production and root system parameters regardless the P level. This cultivar showed contrasting responses of As translocation to shoot tissue dependent on P levels, with the highest As concentration under low P and lowest under normal P levels. P nutrition was most striking on plants recovery for all cultivars under As exposure. Clearer separation of cultivars for phosphorus use efficiency (PUE) occurred at lower shoot P contents, that was, at higher levels of P deficiency stress. IRGA 424 showed higher PUE as compared to the others cultivars. Our results go some way to understanding the role of P nutrition in controlling the effects of As in rice shoots.


Assuntos
Arsênio/farmacocinética , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fósforo/farmacologia , Arsênio/análise , Transporte Biológico , Biomassa , Fertilizantes , Hidroponia/métodos , Fósforo/análise , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Valores de Referência , Reprodutibilidade dos Testes , Sementes/efeitos dos fármacos , Sementes/metabolismo , Fatores de Tempo
4.
An. acad. bras. ciênc ; 89(1): 163-174, Jan,-Mar. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886642

RESUMO

ABSTRACT A hydroponic experiment was carried out to investigate the effect of phosphorus (P) nutrition on arsenic (As) uptake and translocation within the seedlings of rice cultivars. The experiment occurred in three stages: I 5 days of acclimatization (nutritive solution); II 10 days under P (0.0 and 0.09 mM) and As (0.0 and 100 mM) treatments; III 5 days under recovery. The As exposure had significant effect reducing dry weights of shoots or roots, resulted in elevated concentrations of As in shoot tissues. BR-IRGA 409 showed the highest susceptibility to As in biomass production and root system parameters regardless the P level. This cultivar showed contrasting responses of As translocation to shoot tissue dependent on P levels, with the highest As concentration under low P and lowest under normal P levels. P nutrition was most striking on plants recovery for all cultivars under As exposure. Clearer separation of cultivars for phosphorus use efficiency (PUE) occurred at lower shoot P contents, that was, at higher levels of P deficiency stress. IRGA 424 showed higher PUE as compared to the others cultivars. Our results go some way to understanding the role of P nutrition in controlling the effects of As in rice shoots.


Assuntos
Fósforo/farmacologia , Arsênio/farmacocinética , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fósforo/análise , Arsênio/análise , Valores de Referência , Sementes/efeitos dos fármacos , Sementes/metabolismo , Fatores de Tempo , Transporte Biológico , Reprodutibilidade dos Testes , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Hidroponia/métodos , Biomassa , Fertilizantes
5.
Ciênc. rural ; 46(3): 506-512, mar. 2016. tab
Artigo em Inglês | LILACS | ID: lil-769686

RESUMO

ABSTRACT: Aluminum (Al) is highly toxic to plants, causing stress and inhibiting growth and silicon (Si) is considered beneficial for plants. This chemical element has a high affinity with Al. The aim of this study was to investigate the potential of Si to mitigate the toxic effects of Al on potato ( Solanum tuberosum L.) plants and assess whether this behavior is different among genotypes with differing degrees of sensitivity to Al. Potato plants of the genotypes SMIJ319-7 (Al-sensitive) and SMIF212-3 (Al-tolerant) were grown for fourteen days in nutrient solution (without P and pH 4.5±0.1) under exposure to combinations of Al (0 and 1.85mM) and Si (0, 0.5 and 1.0mM). After this period, shoot and roots of the two genotypes were collected to determine Al content in tissues and assess morphological parameters of root and shoot growth. Roots of both genotypes accumulated more Al than shoots and the Al-tolerant genotype accumulated more Al than the sensitive one, both in roots and in shoot. Furthermore, the presence of 0.5 and 1.0mM Si together with Al reduced the Al content in shoot in both genotypes and in roots of the Al-tolerant genotype, respectively. Si ameliorated the toxic effects of Al with regard to number of root branches and leaf number in both potato genotypes. Si has the potential to mitigate the toxic effects of Al in potato plants regardless of Al sensitivity.


RESUMO: O alumínio (Al) é altamente tóxico para as plantas, causando estresse e inibindo o crescimento e o silício (Si) é considerado benéfico para as plantas. Este elemento químico tem uma alta afinidade com o Al. O objetivo deste estudo foi investigar o potencial do Si em amenizar os efeitos tóxicos do Al sobre plantas de batata ( Solanum tuberosum L.) e avaliar se esse comportamento é diferente entre os genótipos com diferente sensibilidade ao Al. Plantas de batata dos genótipos SMIJ319-7 (sensível ao Al) e SMIF212-3 (tolerante ao Al) foram cultivadas por 14 dias em solução nutritiva (sem P e pH 4,5±0,1), sob exposição a combinações de Al (0 e 1,85mM) e Si (0; 0,5 e 1,0mM). Após esse período, parte aérea e raízes dos dois genótipos foram coletadas para determinar o conteúdo de Al nos tecidos e avaliar parâmetros morfológicos das raízes e parte aérea. Raízes de ambos os genótipos acumularam mais Al do que a parte aérea, e o genótipo tolerante ao Al acumulou mais Al do que o sensível, tanto nas raízes quanto na parte aérea. Além disso, a presença de 0,5 e 1,0mM de Si juntamente com Al reduziu o conteúdo de Al na parte aérea em ambos os genótipos e nas raízes do genótipo tolerante ao Al, respectivamente. O Si amenizou os efeitos tóxicos do Al para número de ramificações de raízes e de folhas em ambos os genótipos de batata. Si tem o potencial para amenizar os efeitos tóxicos do Al em plantas de batata, independente da sensibilidade ao Al.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...